博客
关于我
HDU 1241 Oil Deposits
阅读量:787 次
发布时间:2019-03-23

本文共 5108 字,大约阅读时间需要 17 分钟。

    

Oil Deposits

The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.

Input

The input file contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either '*' representing the absence of oil, or '@' representing an oil pocket.

Output

For each grid, output the number of distinct oil deposits. Two different pockets are part of the same oil deposit if they are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.

Sample Input

        1 1*3 5*@*@***@***@*@*1 8@@****@*5 5 ****@*@@*@*@**@@@@*@@@**@0 0    

Sample Output

        0        1        2        2    

C++ Implementation

        #include 
#include
#include
#include
using namespace std; const int MAXN = 105; char maze[MAXN][MAXN]; bool vis[MAXN][MAXN]; int n, m; bool judge(int x, int y) { return x >= 0 && x < n && y >= 0 && y < m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = -1; i <= 1; ++i) { for (int j = -1; j <= 1; ++j) { int tx = x + i; int ty = y + j; if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') { dfs(tx, ty); } } } } int main() { while (scanf("%d%d", &n, &m) != EOF) { if (n == 0 && m == 0) break; for (int i = 0; i < n; ++i) { scanf("%s", maze[i]); } memset(vis, false, sizeof(vis)); int ans = 0; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (maze[i][j] == '@' && !vis[i][j]) { ans++; dfs(i, j); } } } cout << ans << endl; } return 0; }

Java Implementation

        import java.util.Scanner;        public class Main {            static int MAXN = 105;            static boolean vis[][] = new boolean[MAXN][MAXN];            static char maze[][] = new char[MAXN][MAXN];            static int n, m;            static boolean judge(int x, int y) {                if (x < 0 || x >= n || y < 0 || y >= m) return false;                return true;            }            public static void main(String args[]) {                Scanner cin = new Scanner(System.in);                while (cin.hasNext()) {                    n = cin.nextInt();                    m = cin.nextInt();                    cin.nextLine();                    if (n == 0 && m == 0) break;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            vis[i][j] = false;                        }                    }                    for (int i = 0; i < n; ++i) {                        String s = cin.nextLine();                        maze[i] = s.toCharArray();                    }                    int ans = 0;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            if (maze[i][j] == '@' && !vis[i][j]) {                                ans++;                                dfs(i, j);                            }                        }                    }                    System.out.println(ans);                }                cin.close();            }            static void dfs(int x, int y) {                vis[x][y] = true;                for (int i = -1; i <= 1; ++i) {                    for (int j = -1; j <= 1; ++j) {                        int tx = x + i;                        int ty = y + j;                        if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') {                            dfs(tx, ty);                        }                    }                }            }        }    

转载地址:http://olhzk.baihongyu.com/

你可能感兴趣的文章
Objective-C实现时间戳转为年月日时分秒(附完整源码)
查看>>
Objective-C实现是否为 Pythagoreantriplet 毕氏三元数组算法(附完整源码)
查看>>
Objective-C实现显示响应算法(附完整源码)
查看>>
Objective-C实现普通矩阵A和B的乘积(附完整源码)
查看>>
Objective-C实现更新数字指定偏移量上的值updateBit算法(附完整源码)
查看>>
Objective-C实现最大类间方差法OTSU算法(附完整源码)
查看>>
Objective-C实现最大非相邻和算法(附完整源码)
查看>>
Objective-C实现最小二乘多项式曲线拟合(附完整源码)
查看>>
Objective-C实现最小路径和算法(附完整源码)
查看>>
Objective-C实现最快的归并排序算法(附完整源码)
查看>>
Objective-C实现最长公共子序列算法(附完整源码)
查看>>
Objective-C实现最长回文子串算法(附完整源码)
查看>>
Objective-C实现最长回文子序列算法(附完整源码)
查看>>
Objective-C实现最长子数组算法(附完整源码)
查看>>
Objective-C实现最长字符串链(附完整源码)
查看>>
Objective-C实现最长递增子序列算法(附完整源码)
查看>>
Objective-C实现有限状态机(附完整源码)
查看>>
Objective-C实现有限状态自动机FSM(附完整源码)
查看>>
Objective-C实现有限集上给定关系的自反关系矩阵和对称闭包关系矩阵(附完整源码)
查看>>
Objective-C实现朴素贝叶斯算法(附完整源码)
查看>>