博客
关于我
HDU 1241 Oil Deposits
阅读量:787 次
发布时间:2019-03-23

本文共 5108 字,大约阅读时间需要 17 分钟。

    

Oil Deposits

The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.

Input

The input file contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either '*' representing the absence of oil, or '@' representing an oil pocket.

Output

For each grid, output the number of distinct oil deposits. Two different pockets are part of the same oil deposit if they are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.

Sample Input

        1 1*3 5*@*@***@***@*@*1 8@@****@*5 5 ****@*@@*@*@**@@@@*@@@**@0 0    

Sample Output

        0        1        2        2    

C++ Implementation

        #include 
#include
#include
#include
using namespace std; const int MAXN = 105; char maze[MAXN][MAXN]; bool vis[MAXN][MAXN]; int n, m; bool judge(int x, int y) { return x >= 0 && x < n && y >= 0 && y < m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = -1; i <= 1; ++i) { for (int j = -1; j <= 1; ++j) { int tx = x + i; int ty = y + j; if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') { dfs(tx, ty); } } } } int main() { while (scanf("%d%d", &n, &m) != EOF) { if (n == 0 && m == 0) break; for (int i = 0; i < n; ++i) { scanf("%s", maze[i]); } memset(vis, false, sizeof(vis)); int ans = 0; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (maze[i][j] == '@' && !vis[i][j]) { ans++; dfs(i, j); } } } cout << ans << endl; } return 0; }

Java Implementation

        import java.util.Scanner;        public class Main {            static int MAXN = 105;            static boolean vis[][] = new boolean[MAXN][MAXN];            static char maze[][] = new char[MAXN][MAXN];            static int n, m;            static boolean judge(int x, int y) {                if (x < 0 || x >= n || y < 0 || y >= m) return false;                return true;            }            public static void main(String args[]) {                Scanner cin = new Scanner(System.in);                while (cin.hasNext()) {                    n = cin.nextInt();                    m = cin.nextInt();                    cin.nextLine();                    if (n == 0 && m == 0) break;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            vis[i][j] = false;                        }                    }                    for (int i = 0; i < n; ++i) {                        String s = cin.nextLine();                        maze[i] = s.toCharArray();                    }                    int ans = 0;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            if (maze[i][j] == '@' && !vis[i][j]) {                                ans++;                                dfs(i, j);                            }                        }                    }                    System.out.println(ans);                }                cin.close();            }            static void dfs(int x, int y) {                vis[x][y] = true;                for (int i = -1; i <= 1; ++i) {                    for (int j = -1; j <= 1; ++j) {                        int tx = x + i;                        int ty = y + j;                        if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') {                            dfs(tx, ty);                        }                    }                }            }        }    

转载地址:http://olhzk.baihongyu.com/

你可能感兴趣的文章
Objective-C实现Levenshtein 距离算法(附完整源码)
查看>>
Objective-C实现levenshteinDistance字符串编辑距离算法(附完整源码)
查看>>
Objective-C实现lfu cache缓存算法(附完整源码)
查看>>
Objective-C实现LFU缓存算法(附完整源码)
查看>>
Objective-C实现linear congruential generator线性同余发生器算法(附完整源码)
查看>>
Objective-C实现linear search线性搜索算法(附完整源码)
查看>>
Objective-C实现LinkedListNode链表节点类算法(附完整源码)
查看>>
Objective-C实现LinkedList链表算法(附完整源码)
查看>>
Objective-C实现logistic regression逻辑回归算法(附完整源码)
查看>>
Objective-C实现logistic sigmoid函数(附完整源码)
查看>>
Objective-C实现longest increasing subsequence最长递增子序列算法(附完整源码)
查看>>
Objective-C实现longestCommonSubsequence最长公共子序列算法(附完整源码)
查看>>
Objective-C实现LongestIncreasingSubsequence最长递增子序列算法(附完整源码)
查看>>
Objective-C实现lorenz transformation 洛伦兹变换算法(附完整源码)
查看>>
Objective-C实现Lower-Upper Decomposition上下分解算法(附完整源码)
查看>>
Objective-C实现LowerCaseConversion小写转换算法(附完整源码)
查看>>
Objective-C实现lowest common ancestor最低共同祖先算法(附完整源码)
查看>>
Objective-C实现LRU 缓存算法(附完整源码)
查看>>
Objective-C实现LRU缓存(附完整源码)
查看>>
Objective-C实现lstm prediction预测算法(附完整源码)
查看>>